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Abstract
While the magnetic induction equation in plasmas, governing kinematic
dynamos, is a linear one admitting exponential growth of the magnetic energy
for certain velocity fields, the addition of the Hall term turns it into a nonlinear
parabolic equation. Local existence of solutions may be proved, but in contrast
with the magnetohydrodynamics case, for a number of boundary conditions the
magnetic energy grows at most linearly in time for stationary velocity fields,
and like the square of the time in the general case. It appears that the Hall effect
enhances diffusivity in some way to compensate for the positive contribution
of the transport of the magnetic field by the flow occurring in fast dynamos.

PACS numbers: 02.30.Jr, 52.30.Cv, 52.35.Ra, 91.25.Cw

1. Introduction

The classical magnetohydrodynamics (MHD) model treats the plasma as a charged fluid
formed by a single species of particles. While reasonably accurate in many large-scale
phenomena, the limitations of the model have become clear in recent studies of magnetic
reconnection [1–4]. It turns out that the separation of ions and electrons is an essential feature
in fast reconnection, so the MHD system should be replaced in these situations by a more
precise description. Two-fluid (or electron) MHD is the next simplest model, and a very
satisfactory one when one does not need to discriminate between different species of ions.
The basic equations may be found in several classic books and review papers, such as [5–7].
After some manipulation, they reduce in the incompressible case to

∂v
∂t

= ν�v − v · ∇v + B · ∇B − ∇
(

p +
1

2
B2

)
+ f (1)

m

e2n

∂∇ × J
∂t

+
∂B
∂t

= η�B + ∇ × (v × B) − 1

en
∇ × (J × B), (2)
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where the meaning of the magnitudes is as follows: v is the ions’ velocity, B is the magnetic
field, J = ∇ × B is the current density, p is the pressure, f is an arbitrary force on the
momentum equation, ν is the viscosity, η is the resistivity, m is the electron mass, e its charge,
and n is the number density. The value h = 1/en is the Hall coefficient. Since m is very
small, we will consider it null, and call the remaining equations the Hall system. The whole
system (1), (2) turns out to be mathematically consistent, and local existence of solutions may
be proved for a variety of boundary conditions [8], but the Hall system is more commonly
used in numerical experiments and a theoretical study of its features is advisable. Mostly, we
will concentrate on the induction equation (2) and take the velocity v as a datum uninfluenced
by the magnetic field. This procedure has a long history: in dynamo theory it is known as the
kinematic dynamo, and it has been studied in depth in order to analyse which kinds of flows
yield exponential growth of the magnetic energy. Fast dynamos, where exponential growth
occurs even in the limit of zero resistivity, are particularly interesting [9]. Any kinematic
approach is valid only for a finite time, before the Lorentz force acts effectively upon the
velocity. Kinematic MHD has an essential feature lacking in the Hall version: the induction
equation is linear with respect to the magnetic field. Thus its mathematical study, if not
straightforward, is predictable in a number of ways. For instance, when the velocity is smooth
and bounded, unique solutions exist for all time and one can expect at most exponential
growth. That this type of growth really exists for certain flows is an important result of
kinematic dynamo theory. We intend to analyse the analogous problem for the (nonlinear)
incompressible Hall induction equation and will find that in contrast to the MHD case, and
for a number of boundary conditions (including Dirichlet and periodic ones) the Hall equation
does not admit exponentially increasing solutions for all time: the rate of growth of ‖B‖2 is
at most linear in time. It is curious that the nonlinearity of this equation, instead of allowing
the possibility of blow-up like many others, tends to dampen the possible growth of magnetic
energy. Since the study of fast dynamos was originally motivated by certain astrophysical
phenomena where rapid magnetic field growth is apparent (notably in magnetic stars, such as
the Sun) and fast magnetic reconnection, which as stated needs the Hall effect, also occurs
in the same objects, it seems reasonable to consider the same set of equations for both
instances.

Finally, note that unlike classical MHD, the Hall system cannot be defined in less than
three spatial dimensions. However, the magnitudes themselves may be allowed to depend
only on two spatial coordinates: in fact, most theoretical studies so far have been performed
in this case (see, e.g., [10]).

2. Local existence of solutions

In order to pose properly the problem, we need to fix the boundary conditions. Except for the
periodic case, � will be a smooth three-dimensional bounded domain. We will consider the
following classical conditions:

(1) Periodic problem. � is a box [0, L]3, B and v are periodic at opposite sides of it, and

∫
�

B dV =
∫

�

v dV = 0.

(2) Dirichlet problem. B|∂� = v|∂� = 0.
(3) Perfect conductor. v|∂� = 0, B · n|∂� = 0, J × n|∂� = 0.
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Many other conditions are possible, provided the highest order operator is an elliptic one.
Additionally, we must impose ∇ · B = 0 plus the incompressibility condition ∇ · v = 0.
Therefore we have

−h∇ × (J × B) = hJ · ∇B − hB ·∇J.

Thus the highest (second-)order differential operator in (2) is

B → η�B − hB · ∇J, (3)

which may be written following the convention of summing in repeated indices as

B →

 η∂i,i Bi∂i,3 −Bi∂i,2

−Bi∂i,3 η∂i,i Bi∂i,1

Bi∂i,2 −Bi∂i,1 η∂i,i


 B, (4)

and for any fixed function B∗ and real vector x, the matrix

MB∗ =

 ηx2 (B∗ · x)x3 −(B∗ · x)x2

−(B∗ · x)x3 ηx2 (B∗ · x)x1

(B∗ · x)x2 −(B∗ · x)x1 ηx2


 , (5)

is positive definite uniformly in B∗: for any real vector y,

MB∗(y) · y = ηx2|y|2. (6)

An analogous consideration applies to the whole Hall MHD system. In that case, the variables
to be considered are the two fields (v, B), but the highest order operator upon the velocity is
simply the Laplacian.

Hence the operator

LB∗ : B → η�B − hB∗ · ∇J, (7)

is an elliptic one. Take any set of boundary conditions such that the subspace DL of the
Sobolev space H 2(�) formed by the solenoidal functions satisfying them is such that

LB∗ : DL → L2(�)3 (8)

is a bijection for any B∗ ∈ C1(�̄)3. This means that the equation LB∗F = f has a unique
solution in DL for any f ∈ L2(�)3; this holds for all the previously stated conditions and many
others. Assume also that v ∈ C2(�̄ × [0,∞))3 (although this condition could be relaxed).
Then the Hall induction equation (2), for any solenoidal initial condition B(0) ∈ C1(�)3 has a
unique solution for some interval t ∈ [0, t0); moreover, B(t) ∈ DL for all t > 0, which means
that B satisfies the boundary conditions. The result is a consequence of general theorems on
nonlinear parabolic equations; see, e.g., [11], pp 169–81. It may be applied as well to the
whole Hall MHD system.

3. Bounds on the magnetic energy

We will assume that the boundary conditions satisfy two properties. The first one is commonly
used for energy inequalities and it states that there is no seepage of magnetic energy through
the boundary of �:

1

2

∫
∂�

∂B2

∂n
dσ =

∫
∂�

B · ∂B
∂n

dσ = 0. (9)

This equality holds in particular for boundary conditions (1)–(3) above. The second condition
is directed to the Hall term and is less usual:∫

∂�

((J × B) × B) · n dσ = 0. (10)
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This happens, for example, if B × n = 0, or J · n = B · n = 0. Thus it always holds for
the Dirichlet condition (2). The integral also vanishes in the periodic case, provided J is also
periodic: in general only J · n is periodic. For the perfect conductor case, (10) holds, for
example, if the current density vanishes at the boundary.

We will also assume∫
∂�

(B · n)(B · v) dσ = 0,

which holds for all cases (1)–(3), and also when the velocity satisfies a no-slip condition:
v|∂� = 0.

When B is smooth enough for Gauss’ theorem to apply (certainly in the previous interval
of existence, where B ∈ H 2(�)),
1

2

∂

∂t

∫
�

B2 dV = η

∫
�

�B · B dV − 1

2

∫
�

v · ∇B2 dV

+
∫

�

B · ∇v · B dV − h

∫
�

∇ × (J × B) · B dV. (11)

Now∫
�

�B · B dV =
∫

∂�

B · ∂B
∂n

dσ −
∫

�

|∇B|2 dV = −
∫

�

|∇B|2 dV � −
∫

�

J 2 dV (12)

∫
�

v · ∇B2 dV =
∫

∂�

B2(v · n) dσ = 0, (13)

∫
�

∇ × (J × B) · B dV =
∫

∂�

((J × B) × B) · n dσ +
∫

�

(J × B) · J dV = 0. (14)

Therefore the classical energy inequality holds for the Hall induction equation,

1

2

∂

∂t
‖B‖2

2 � −η‖J‖2
2 +

∫
�

B · ∇v · B dV. (15)

Let us consider now a stream function w, i.e., a function such that ∇ × w = v. Since
v · n|∂� = 0, we may take w such that w × n|∂� = 0; w also satisfies that its H 1-norm is
bounded by a constant, depending only on the domain �, times the L2-norm of v (see, e.g.,
[12]). Then, multiplying the induction equation by w,∫

�

∂B
∂t

· w dV = −η

∫
�

(∇ × J) · w dV

+
∫

�

(∇ × (v × B)) · w dV − h

∫
�

(∇ × (J × B)) · w dV. (16)

We have∫
�

(∇ × J) · w dV =
∫

∂�

(J × w) · n dσ +
∫

�

J · (∇ × w) dV =
∫

�

J · v dV. (17)

Also∫
�

(∇ × (v × B)) · w dV =
∫

∂�

((v × B) × w) · n dσ +
∫

�

(v × B) · v dV = 0. (18)

Finally,∫
�

(∇ × (J × B)) · w dV =
∫

�

(∇ × (B · ∇B)) · w dV

=
∫

∂�

((B · ∇B) × w) · n dσ +
∫

�

B · ∇B · v dV. (19)
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The boundary integral vanishes, and∫
�

B · ∇B · v dV =
∫

�

B · ∇(B · v) dV −
∫

�

B · ∇v · B dV

=
∫

∂�

(B · n)(B · v) dσ −
∫

�

B · ∇v · B dV. (20)

Therefore ∫
�

∂B
∂t

· w dV = −η

∫
�

J · v dV + h

∫
�

B · ∇v · B dV. (21)

By combining (15) and (21) we obtain
h

2

∂

∂t
‖B‖2

2 −
∫

�

∂B
∂t

· w dV � −ηh‖J‖2
2 + η

∫
�

J · v dV. (22)

Now, since by Young’s inequality∫
�

J · v dV � h‖J‖2
2 +

1

4h
‖v‖2

2, (23)

we get
h

2

∂

∂t
‖B‖2

2 −
∫

�

∂B
∂t

· w dV � η

4h
‖v‖2

2. (24)

Assume first that v is stationary; obviously, we may take w also stationary, so that∫
�

∂B
∂t

· w dV = ∂

∂t

∫
�

B · w dV. (25)

By integrating (24) in time, we obtain
h

2
‖B(t)‖2

2 �
∫

�

(B(t) − B(0)) · w dV +
h

2
‖B(0)‖2

2 +
η

4h
‖v‖2

2t, (26)

which implies that
h

2
‖B(t)‖2

2 − ‖B(t)‖2‖w‖2 � h

2
‖B(0)‖2

2 + ‖B(0)‖2‖w‖2 +
η

4h
‖v‖2

2t. (27)

Therefore

‖B(t)‖2 � 1

h
‖w‖2 +

[
1

h2
‖w‖2

2 + ‖B(0)‖2
2 +

2

h
‖B(0)‖2‖w‖2 +

η

2h2
‖v‖2

2t

]1/2

, (28)

so that the magnetic energy ‖B‖2
2 grows at most linearly in time.

Velocities constant in time have been used in fast dynamo studies, notably several variants
of the ABC flow [13, 14]; however, most studies deal with time-dependent velocities, often
periodic in time [15]. We may safely assume that ‖∂v/∂t‖2 (and therefore ‖∂w/∂t‖2) remain
bounded in time. Since

∂

∂t

∫
�

B · w dV =
∫

�

∂B
∂t

· w dV +
∫

�

B · ∂w
∂t

dV, (29)

from (24) we obtain

∂

∂t

(
h

2
‖B‖2

2 −
∫

�

B · w dV

)
� η

4h
‖v‖2

2 + ‖B‖2

∥∥∥∥∂w
∂t

∥∥∥∥
2

. (30)

Integrating this inequality in time,
h

2
‖B(t)‖2

2 � ‖B(t)‖2‖w(t)‖2 +
h

2
‖B(0)‖2

2 + ‖B(0)‖2‖w(0)‖2

+
η

4h

∫ t

0
‖v(s)‖2

2 ds +
∫ t

0
‖B(s)‖2

∥∥∥∥∂w
∂s

(s)

∥∥∥∥
2

ds. (31)
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To analyse the behaviour of this inequality, let us simplify it by taking a bound M on all the
functions which are known to be bounded. We get

‖B(t)‖2
2 � M‖B(t)‖2 + M + Mt + M

∫ t

0
‖B(s)‖2 ds. (32)

Although this inequality may be integrated explicitly, it yields an ugly expression too complex
to be of much help. It is simpler to study the possible growth of ‖B‖2 by a simple order
analysis: if it grows like tα , the right-hand side grows at most like tα+1, whereas the left one
behaves like t2α . Thus 2α � α + 1, namely α � 1. Hence the magnetic energy ‖B‖2

2 grows at
most like t2.

4. Conclusions

The magnetic induction equation, taking into account the Hall effect but considering the
plasma velocity as a datum, is a nonlinear parabolic one governing Hall kinematic dynamos.
Existence of solutions may be proved for a finite time for smooth enough initial values of
the magnetic field and for a variety of boundary conditions; incidently, the same argument
may be applied to the full Hall MHD system. The kinematic dynamo problem in classical
MHD yields a linear equation in which the magnetic field grows at most exponentially; this
possibility actually occurs for a number of well-known velocity fields. Rather surprisingly, the
Hall term actually inhibits the magnetic growth in the sense that the magnetic energy grows
at most linearly in time for stationary velocities and at most quadratically for general ones,
provided the L2-norm of the time derivative of the velocity remains bounded, as it happens in
all known examples. Apparently, the Hall effect precludes the transport of the magnetic field
by the flow, plus the positive folding, present in all successful instances of fast dynamos.
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